Inspiring good practices:
a database to trigger energy efficient renovations of historic buildings

eurac research
Daniel Herrera, Ph.D.
daniel.herrera@eurac.edu
8th October 2019, Brussels.
REDay2019 - Deep Energy Renovations: Already All Around Us
250

MT of CO$_2$ 2050

ENERGY EFFICIENT
HISTORIC BUILDINGS
A BEST PRACTICE DATABASE FOR ENERGY EFFICIENT RENOVATION OF HISTORIC BUILDINGS

The Historic Building Energy Retrofit Atlas compiles cases of building renovation that are exemplary both in terms of heritage conservation and energy efficiency in order to inspire and foster energy retrofits.
WHAT is documented?

Any building of historic and/or cultural value **independent of the level of protection** is considered - from medieval buildings over buildings from the 1920s to post WWII architecture.
WHAT is documented?

The basic requirements for best-practices are
✓ Implementation of the project **completed**
✓ Renovation of the **whole building**
✓ **Significant reduction** of energy consumption (towards “lowest possible energy demand”)
✓ Evaluation of the **heritage compatibility** of the solutions
✓ Available **documentation** of technical solutions
HOW is it documented?

Second level of detail data and information

1. images of the building and key figures of the intervention
2. a description of the context and the rationale behind the solutions adopted
3. the different retrofit solutions implemented
4. evaluation of the intervention in terms of energy efficiency, internal climate, cost and environmental impact.
HOW is it documented?

Second level of detail data and information
1. images of the building and key figures of the intervention
2. a description of the context and the rationale behind the solutions adopted
3. the different retrofit solutions implemented
4. evaluation of the intervention in terms of energy efficiency, internal climate, cost and environmental impact.
HOW is it documented?

Second level of detail data and information
1. images of the building and key figures of the intervention
2. a description of the context and the rationale behind the solutions adopted
3. the different retrofit solutions implemented
4. evaluation of the intervention in terms of energy efficiency, internal climate, cost and environmental impact.
HOW is it documented?

Second level of detail data and information

1. images of the building and key figures of the intervention
2. a description of the context and the rationale behind the solutions adopted
3. the different retrofit solutions implemented
4. evaluation of the intervention in terms of energy efficiency, internal climate, cost and environmental impact.
WHO is documenting?

This is a joint development of two research projects:

- The European Interreg Alpine Space project “ATLAS”
- The International Energy Agency (IEA) project “IEA-SHC Task 59”.

Initially, the partners of both projects are contributing with evaluated case studies. In a second stance, owners and designers of suitable example are invited to participate.
ATLAS | Interreg Alpine Space

Advanced Tools for Low-carbon, high-value development of historic architecture in the Alpine Space

Develop a **knowledge base** looking at the historic building stock, existing guidelines and good practice building renovations.

Identify, assess and optimise **conservation compatible retrofit solutions**. Develop tools to guide their application.

Support **municipalities** in the implementation of **strategies** leading to robust solutions for historic buildings.

Exploit knowledge gained from the best practice examples to **policy, research, practitioners and general public**.

© Stefan Taschler
© Veronika Player
© Eranzi Potsch
THANKS FOR YOUR ATTENTION!

The ATLAS Project is co-financed by the European Regional Development Fund through the Interreg Alpine Space program.

http://task59.ieashc.org/